VAV system solution
for non-pressure-dependent applications in enclosed spaces

Table of contents

Technical data sheet
- Brief description 3
- Technical data 4
- Safety notes 5
- Dimensions 5
- Operation, setup, connections 6
- Electrical connections 7

Funktionen
- Nominal volumetric flow $\dot{V}_{\text{nom}}$ 8
- Operating volumetric flow, $\dot{V}_{\text{min}}$ ... $\dot{V}_{\text{max}}$ 8
- VAV application 8
- VAV voltage level 8
- VAV operation 8
- CAV application 9
- Control 9
- Priorities input w / Z1 / Z2 9
- $\dot{V}_{\text{min}}$ / $\dot{V}_{\text{max}}$ setting [Potentiometer or Tool (PP Command)] 9

Setting with VAV adjustment tool ZTH-VAV 10

Actuator variants / VAV adjustment tool ZTH-VAV 11
Plug-ready VAV-Universal system solution with integrated, almost static Belimo D3 pressure sensor for non-pressure-dependent VAV and CAV applications in enclosed spaces.

Control:
DC 2 ... 10 V / 0 ... 10 V / contacts

Settings:
• at the controller $V_{\text{min}}$ / $V_{\text{max}}$ or
• with VAV adjustment tool ZTH-VAV

### Brief description

| **Application** | The digital VAV-Universal solution VRD3 with its PI control characteristics is used for pressure-independent control of VAV units in the comfort zone. |
| **Pressure measurement** | The integrated maintenance-free Belimo D3 differential pressure sensor allows a variety of applications ranging from offices, hospitals and hotels all the way to cruise ships. |
| **Actuator** | The following actuator models are available, depending on the area of application, size and structural shape of the VAV unit:

  - Rotary actuator 0 ... 95°, depending on the size 5, 10, 20 Nm
  - Rotary actuator 0 ... 95° with safety position current-free CLOSED or OPEN, 4 or 20 Nm
  - Rotary actuator 0 ... 1800° e.g. for iris dampers 3 Nm
  - Linear actuation 100, 200 or 300 mm linear motion, 150 N |

| **Control function:** | VAV or CAV operation |
| **Bus mode** | The utilisation of the VRD3 in MP-Bus systems (UK24LON, Fan Optimiser COU24-A-MP, etc.) is not possible. The VAV-Compact series and the VAV-Universal VRP-M system solution is available for these bus applications. |

**VAV – variable air volume**

For variable air volume applications based on a modulating reference variable, e.g. supplied by a room temperature controller or a DDC system; it facilitates demand-related, power-saving ventilation in individual rooms or in zones of air conditioning systems. The $V_{\text{min}}$ ... $V_{\text{max}}$ working range can be subdivided by selecting a mode. Available are the following:

DC 2 ... 10 / 0 ... 10 V.

**CAV – constant volume flow**

For constant air volume applications, e.g. in step mode, controlled by means of an occupancy switch. The following operating modes are available:

CLOSED / $V_{\text{min}}$ / $V_{\text{max}}$ / OPEN

**Function indication**

Functional readiness display with green LED.

**Operating and service devices**

• VAV adjustment and diagnostics device ZTH-VAV: pluggable at the service socket of the VRD3 or at the PP interface (terminal 4).
• Belimo PC-Tool: cannot be used with the VRD3

**Assembly and connection**

The connection is made by screw terminal. The actuator is connected with a plug-ready, pre-assembled cable.

**OEM factory settings**

The VRD3 system solution is mounted on the VAV unit by the unit manufacturer, who adjusts and tests it according to the application. The VRD3 solution is sold exclusively through the OEM channel for this reason.
### Technical data

#### Supply
- **Nominal voltage**: AC 24 V, 50 / 60 Hz / DC 24 V
- **Nominal voltage range**: AC 19.2 ... 28.8 V / DC 21.6 ... 28.8 V
- **Power consumption**: 2 W / 3.5 VA, without actuator

#### Differential pressure sensor, installed
- **Type, principle of operation**: Belimo D3-Sensor, Dynamic with almost static behaviour
- **Operating range**: For VRD3 application: 2 ... 300 Pa
- **Overload capability**: ±3000 Pa
- **Installation position**: Non-position-dependent, no zero-point compensation necessary
- **Materials in contact with medium**: Glass, epoxy resin, PA, TPE

#### Control function:
- **Application**: VAV and CAV units
- **Pressure range**: 2 ... 300 Pa
- **Max. system primary pressure**: ≤1000 Pa
- **Characterising**: VAV units, OEM-independent, with linearization to match the differential pressure sensor

#### Measuring air conditions
- **Medium**: Supply and exhaust air in the comfort zone and in applications with sensor-compatible media
- **Operating volumetric flow**: OEM-specific nominal volumetric flow setting, suitable for the VAV unit
- **CAV – input w, terminal 3**: Switch-selectable VRD3 ↔ VRD2 (compatible with predecessor model, see page 4)
- **CAV – input w, terminal 3**: Switch-selectable VRD3 ↔ VRD2 (compatible with predecessor model, see page 4)
- **Override – input Z1 / Z2**: Requires AC 24 V power supply
- **Actual volumetric flow signal [U5] – terminal 5**: DC 2 ... 10 / 0 ... 10 V for 0 ... 100% \( V_{nom} \)
- **Actual volumetric flow signal [U5] – terminal 5**: DC 2 ... 10 / 0 ... 10 V for 0 ... 100% \( V_{nom} \)

#### Operating
- **Tool**: VAV adjustment tool ZTH-VAV, connection via service plug or PP connection
- **Actuator (..-V models)**: 5 / 10 / 20 Nm, depending on application
- **Sound power level**: Max. 35 dB(A), SM24A-V max. 45 dB(A)
- **Damper rotation**: Clamp, for axle round / square or positive fit e.g. 8 x 8 mm

#### Connection
- **Supply and control**: 7-pin screw terminals for 2 x 1.5 mm²
- **Tool connection**: RJ12 socket
- **Actuator**: 3-pin plug for ..-V actuator

#### Safety
- **Protection class**: III Safety extra-low voltage
- **Degree of protection**: IP40
- **Mode of operation**: Type 1 (EN 60730-1)
- **Rated impulse voltage**: 0.8 kV (EN 60730-1)
Technical data (continued)

Environment conditions

- Control pollution degree: 2 (EN 60730-1)
- Ambient temperature: 0 ... 50°C
- Non-operating temperature: −20 ... +80°C
- Ambient humidity: 95% r.H., non-condensating (EN 60730-1)
- Maintenance: Maintenance-free

Dimensions / Weight

- Dimensions: See «Dimensions» on page 3
- Weight: Approx. 440 g

Safety notes

- The VRD3 system solution is not allowed to be used outside the specified field of application, especially in aircraft or any other form of air transport.
- Assembly must be carried out by trained personnel. Any legal regulations or regulations issued by authorities must be observed during assembly.
- The device does not contain any parts that can be replaced or repaired by the user.
- The cable must not be removed from the actuator.
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Dimensions [mm]

Dimensional drawings

(For actuators, see separate data sheets)

Compatibility VRD3 ↔ VRD2
The VRD3 corresponds in its dimensions and connections to the VRD2.
Operation, setup, connections

Setup, connections

Connecting terminals 1 … 7

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_ / ~</td>
<td>Supply AC/DC 24 V</td>
</tr>
<tr>
<td>2</td>
<td>~ / _</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>w</td>
<td>Reference value input w jumper VRD3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Mode 0 ... 10 / 2 ... 10 V switchable with ZTH-VAV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Function as with new VAV-Compact L/N/SMV-D2-MP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAV: 0 ... 10 / 2 ... 10 V = ( V_{\text{min}} ) ... ( V_{\text{max}} )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAV: CLOSED / ( V_{\text{min}} ) / ( V_{\text{max}} ) / OPEN</td>
</tr>
<tr>
<td>4</td>
<td>PP</td>
<td>PP interface for ZTH-VAV (no MP operation)</td>
</tr>
<tr>
<td>5</td>
<td>U5</td>
<td>Actual volumetric flow signal U5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Mode 0 ... 10 / 2 ... 10 V switchable with ZTH-VAV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Display range 0 ... 100% ( V_{\text{nom}} )</td>
</tr>
<tr>
<td>6</td>
<td>Z1</td>
<td>Override input Z1: Function OPEN</td>
</tr>
<tr>
<td>7</td>
<td>Z2</td>
<td>Forced control input Z2: function CLOSED / ( V_{\text{min}} ) / ( V_{\text{max}} )</td>
</tr>
</tbody>
</table>

Note
– Supply via safety isolation transformer!
– It is recommended that the PP connection (terminal 4) and the 24 V be wired to readily accessible terminals in order to guarantee easy access with the VAV adjustment tool ZTH-VAV (e.g. at the room temperature controller CR24 or in the control cabinet).

The VRD3 does not support any MP operation!
Electrical connections

Wiring diagrams

Connection VRD3

- AC 24 V
- DC 24 V

- Reference value input w
- PP connection ZTH-VAV
- Actual volumetric flow U5
- Control input Z1 / Z2

VAV connection: supply and exhaust air system

- AC 24 V
- DC 24 V

- Reference value input w
- 0…10 / 2…10 V
e.g. of room temperature controller CR24

Compatibility VRD3 ↔ VRD2:
- Reference signal [w] (terminal 3)
  Plugging the jumper in at position «VRD2» causes the VRD3 to behave like the predecessor model VRD2 (i.e. no CAV control function via input w).
- Forced control inputs Z1 (terminal 6) and Z2 (terminal 7) are functionally compatible with the VRD2 and are not influenced by the jumper.
- Tool connection PP (terminal 4)
The VRD3 is equipped with a separate tool connection PP (terminal 4). For the VRD2, the tool connection is made via terminal 5, which exhibits a combination function: volumetric flow actual value signal U5 and PP connection.

CAV connection

Connection Z1 / Z2

- AC 24 V

- CLOSED
- V_min
- V_max
- OPEN

Connection input w

- AC 24 V

- CLOSED
- V_min
- V_max
- OPEN

Note:
The input signals 3 (w), 6 (Z1) and 7 (Z2) of several VRD3s can be switched with a joint signal, e.g. CLOSED. It is not permitted to switch connection 6 (Z1) with a VRD2 terminal 6.

Overview control signals / Functions

<table>
<thead>
<tr>
<th>Signal terminal / Function</th>
<th>Priority</th>
<th>GND</th>
<th>pos. hydraulic switch</th>
<th>neg. hydraulic switch</th>
<th>24 VAC</th>
<th>open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced input Z1 – terminal 6</td>
<td>1</td>
<td>–</td>
<td>OPEN</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Forced input Z2 – terminal 7</td>
<td>2</td>
<td>–</td>
<td>CLOSED</td>
<td>V_min</td>
<td>V_max</td>
<td>–</td>
</tr>
<tr>
<td>Tool (PP-Cmd) → ZTH-VAV</td>
<td>3</td>
<td></td>
<td>CAV stages (Auto, CLOSED, OPEN, V_min, V_max, Stop)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference signal w – terminal 3 Jumper: VRD3</td>
<td>4</td>
<td>CLOSED</td>
<td>Mode: 2...10 V</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>Mode: 0...10 V</td>
</tr>
</tbody>
</table>

Note:
*) CAV control applications requires AC 24 V power supply.
**Nominal volumetric flow \( \dot{V}_{\text{nom}} \)**

\( \dot{V}_{\text{nom}} \) corresponds to the maximum volumetric flow of the VAV unit at which the pressure drop and noise are still within the permissible operating conditions. The \( \dot{V}_{\text{nom}} \) values are defined by the unit manufacturer for all unit nominal values; the VRD3 controller is calibrated by the OEM to this flow rate.

The volumetric flow actual value signal U5 is always in relation to the \( \dot{V}_{\text{nom}} \). Modifications of the operating volumetric flow settings \( \dot{V}_{\text{min}} \) and \( \dot{V}_{\text{max}} \) have therefore no influence on the U5 volt signal.

**Operating volumetric flow, \( \dot{V}_{\text{min}} \ldots \dot{V}_{\text{max}} \)**

In variable operation, the volumetric flow is specified by means of the reference signal in the range \( \dot{V}_{\text{min}} \ldots \dot{V}_{\text{max}} \):
- \( \dot{V}_{\text{max}} \) forms the upper limit value. Adjustment range 30 \ldots 100% of \( \dot{V}_{\text{nom}} \).
- \( \dot{V}_{\text{min}} \) forms the lower limit value. Adjustment range 0 \ldots 100% of \( \dot{V}_{\text{nom}} \).

The \( \dot{V}_{\text{max}} \) value must always be set higher than the \( \dot{V}_{\text{min}} \) value; otherwise the VRD3 controller will operate with the \( \dot{V}_{\text{min}} \) volume as setpoint in CAV mode.

See also Note 1 below. For \( \dot{V}_{\text{min}} / \dot{V}_{\text{max}} \) setting, see page 8.

**VAV application**

In VAV operation, the regulated amount of air \( \dot{V}_{\text{min}} \ldots \dot{V}_{\text{max}} \) is specified via an analogue reference signal, e.g. from a 2 \ldots 10 V room temperature controller.

Example: Mode 0 \ldots 10 V

**VAV voltage level**

![VAV voltage level diagram](image)

**VAV operation**

- **With «Damper CLOSED» option**
  In mode 2 \ldots 10 V, it is possible to achieve shut-off mode (damper CLOSED) by lowering the reference signal to <0.1 V.

- **With superordinate override controls**
  For forced control input during VAV operation, e.g. CLOSED or OPEN, the reference signal w (input 3) can be overridden by switching the control inputs 6 (Z1) and 7 (Z2).

---

1) **Note concerning difference \( \dot{V}_{\text{min}} \) setting VRD3, VRD2**

The adjustment range of the operating mode \( \dot{V}_{\text{min}} \) with:
- VRD2 refers to 0 \ldots 100% of \( \dot{V}_{\text{max}} \)
- VRD3 refers to 0 \ldots 100% of \( \dot{V}_{\text{nom}} \)

The \( \dot{V}_{\text{min}} \) setting of the VRD3 thus behaves in compatible fashion with the new VAV generation (starting with 2006), i.e. VAV-Compact L/N/SMV-D2-MP, VRP-M.
Functions

CAV application
Four constant volumetric flow (CAV) stages are available for step mode:
– Shut-off operation – damper CLOSED: the damper is moved to CLOSED.
– CAV stages $V_{\text{min}} / V_{\text{max}}$: the VRD3 controls the selected volumetric flow at a fixed value.
– Flushing operation – damper OPEN: The damper can be opened for maximum ventilation, in which case air volume control is deactivated.

The operating mode control signals are connected to inputs 6 (Z1) and 7 (Z2). If signals appear at these two inputs simultaneously, input 6 (Z1) for the OPEN function takes priority.

Priorities input w / Z1 / Z2
| Prio 1: | Z1 (terminal 6) |
| Prio 2: | Z2 (terminal 7) |
| Prio 3: | VAV adjustment tool ZTH-VAV (PP command) |
| Prio 4: | Reference signal w (terminal 3) |

$V_{\text{min}} / V_{\text{max}}$ setting
Die operating volumetric flow settings $V_{\text{min}}$ and $V_{\text{max}}$ can be adjusted two different ways on the VRD3:

a) directly on the adjustment potentiometer (analogous to the VRD2)
   
   $V_{\text{min}}$ 0 … 100% of $V_{\text{nom}}$
   
   $V_{\text{max}}$ 30 … 100% of $V_{\text{nom}}$

b) with VAV adjustment tool ZTH-VAV (PP command)

Both of the potentiometers $V_{\text{min}}$ und $V_{\text{max}}$ must be set to Tool position in order to write a value – with PP Command – in the VRD3. If the potentiometer(s) are set to «Tool» with connected ZTH-VAV, then the menu will need to be refreshed under certain circumstances by actuating the keys ↑↓. For function, see following illustration:

Note concerning difference $V_{\text{min}}$ setting VRD3, VRD2
The adjustment range of the operating mode $V_{\text{min}}$ with:
– VRD2 refers to 0 … 100% of $V_{\text{max}}$
– VRD3 refers to 0 … 100% of $V_{\text{nom}}$
The $V_{\text{min}}$ setting of the VRD3 thus behaves in compatible fashion with the new VAV generation (starting with 2006), i.e. VAV-Compact L/N/SMV-D2-MP, VRP-M.

The $V_{\text{max}}$ value must always be set higher than the $V_{\text{min}}$ value; otherwise the VRD3 controller will operate with the $V_{\text{min}}$ volume as setpoint in CAV mode.
Setting with VAV adjustment tool ZTH-VAV

The entire BELIMO product range with PP connection can be set and controlled with the VAV adjustment tool ZTH-VAV. The connection to the VRD3 is provided by the RJ «Service» socket or at the PP connection (terminal 4), e.g. in the control cabinet.

<table>
<thead>
<tr>
<th>Option</th>
<th>Unit</th>
<th>Range / setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric flow – actual value</td>
<td>%</td>
<td>0 … 100% [of $V_{nom}$]</td>
<td>Commissioning, Service function</td>
</tr>
<tr>
<td>Volumetric flow - setpoint</td>
<td>%</td>
<td>0 … 100% [$V_{min} ... V_{max}$]</td>
<td></td>
</tr>
<tr>
<td>Current effective pressure *</td>
<td>Pa</td>
<td>0 … 300 Pa</td>
<td></td>
</tr>
<tr>
<td>Specify CAV steps</td>
<td></td>
<td>Auto – CLOSED – OPEN – $V_{min} – V_{max} – Stop</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
<td>0 … 10 V, 2 … 10 V</td>
<td></td>
</tr>
<tr>
<td>Vmin. setting</td>
<td>%</td>
<td>0 … 100% [of $V_{nom}$]</td>
<td>Settings, modifications</td>
</tr>
<tr>
<td>Vmax. setting</td>
<td>%</td>
<td>30 … 100% [of $V_{nom}$]</td>
<td></td>
</tr>
<tr>
<td>$V_{nom}$ VAV unit</td>
<td>%</td>
<td>Nominal setting = 100%</td>
<td>OEM setting</td>
</tr>
<tr>
<td>$\Delta p @ V_{nom}$ *</td>
<td>Pa</td>
<td>differential pressure pending with $V_{nom}$</td>
<td></td>
</tr>
</tbody>
</table>

* Option requires ZTH-VAV firmware V1.02 or higher (06.2008). See also Release Note ZTH-VAV, www.belimo.eu.

Specify CAV steps

The VRD3 – with the ZTH-VAV – can be switched to one of the CAV stages illustrated below for functional checking of the VAV / CAV units.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Function</th>
<th>Control function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO *</td>
<td>Setpoint of input w, terminal 3 or 6 / 7.</td>
<td>VAV or CAV operation</td>
</tr>
<tr>
<td>CLOSED</td>
<td>Damper closes</td>
<td>no control mode</td>
</tr>
<tr>
<td>OPEN</td>
<td>Damper opens</td>
<td>no control mode</td>
</tr>
<tr>
<td>$V_{min}$</td>
<td>Controller travels volumetric flow $V_{min}$</td>
<td>CAV operation $V_{min}$</td>
</tr>
<tr>
<td>$V_{max}$</td>
<td>Controller travels volumetric flow $V_{max}$</td>
<td>CAV operation $V_{max}$</td>
</tr>
<tr>
<td>STOP</td>
<td>Damper stops on current position</td>
<td>no control mode</td>
</tr>
</tbody>
</table>

* If the ZTH-VAV has been disconnected from the VRD3 without reactivation of the «Auto» stage, then the VRD3 will be reset to automatic operation after max. 120 s.

Connection

<table>
<thead>
<tr>
<th>Connection to</th>
<th>Cable type and order designation</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRD3, RJ «Service» socket</td>
<td>ZK6-GEN</td>
<td>Accessories</td>
</tr>
<tr>
<td>PP connection (terminal 4), e.g. control cabinet terminals</td>
<td>ZK2-GEN</td>
<td>Accessories</td>
</tr>
</tbody>
</table>

For detailed documentation concerning the handling and function of the ZTH-VAV, see ZTH-VAV instruction manual at www.belimo.eu
Actuator variants (standard actuators)

<table>
<thead>
<tr>
<th>Type</th>
<th>Actuator</th>
<th>Features</th>
</tr>
</thead>
</table>
| **Rotary actuators 0 … 90°†**| LM24A-V  | – Damper actuator for VAV-Universal  
– AC/DC 24 V, modulating, 5 Nm  
– Control DC 6.0 ±4 V from VRD3 controller  
– Motor running time 110 ... 150 s  
– Connection: cable with plug  
– Angle of rotation 90°†  
– For dimensions see data sheet LM24A-MF |
|                             | NM24A-V  | – Damper actuator for VAV-Universal  
– AC/DC 24 V, modulating, 10 Nm  
– Control DC 6.0 ±4 V from VRD3 controller  
– Motor running time 120 s  
– Connection: cable with plug  
– Angle of rotation 90°†  
– For dimensions see data sheet NM24A-MF |
|                             | SM24A-V  | – Damper actuator for VAV-Universal  
– AC/DC 24 V, modulating, 20 Nm  
– Control DC 6.0 ±4 V from VRD3 controller  
– Motor running time 120 s  
– Connection: cable with plug  
– Angle of rotation 90°†  
– For dimensions see data sheet SM24A-MF |
| **Spring-return actuators 0 … 90°†** | LF24-V  | – Spring-return actuator for VAV-Universal  
– AC/DC 24 V, modulating, 4 Nm  
– Control DC 6.0 ±4 V from VRD3 controller  
– Running time motor 120...300 s  
– Running time spring-return approximately 20 s  
– Connection: cable with plug  
– Angle of rotation 95°†  
– For dimensions see data sheet LF24 |
|                             | SF24A-V  | – Spring-return actuator for VAV-Universal  
– AC/DC 24 V, modulating, 20 Nm  
– Control DC 6.0 ±4 V from VRD3 controller  
– Running time motor 150 s  
– Running time spring-return approximately 20 s  
– Connection: cable with plug  
– Angle of rotation 95°†  
– For dimensions see data sheet SF24A |
| **Actuators* for special applications** | * LU24A-… | – Rotary actuator 0 … 1800°† rotating, e.g. for iris dampers 3 Nm  
– For dimensions see data sheet LU24A-MF |
|                             | * LH24A-… | – Linear actuation 100, 200 oder 300 mm linear motion, 150 Nm  
– For dimensions see data sheet LH24A-MF.. |

* on request

**VAV adjustment tool ZTH-VAW**

| ZTH-VAW | – Adjustment tool for Belimo VAV controller  
– Supply to VAV controller AC/DC 24 V |

For more detailed documents, see www.belimo.eu
All inclusive.

Belimo worldwide: www.belimo.com

Headquarters
BELIMO Holding AG
Brunnenbachstrasse 1
CH-8340 Hinwil
Tel. +41 (0)43 843 61 11
Fax +41 (0)43 843 62 68
info@belimo.ch
www.belimo.com

Subsidiaries, Representatives and Agencies
Agentina
Australia
Bahrain
Belgium
Bosnia-Herzegovina
Brazil
Bulgaria
Canada
Chile
Croatia
Cyprus
Czech Republic

Denmark
Egypt
Estonia
Finland
France
Great Britain
Germany
Greece
Hong Kong
Hungary
Iceland
India
Indonesia
Ireland
Israel
Italy
Japan
Jordan
Kuwait
Latvia
Lebanon
Liechtenstein
Lithuania
Luxembourg
Malaysia
Mexico
Morocco
Netherlands
New Zealand
Norway
Oman
Pakistan
People’s Republic of China
Philippines
Poland
Portugal
Qatar
Republic of Korea (South Korea)

Guarantee
Worldwide present
Complete assortment from a single source
Examined Quality
Short delivery time
Comprehensive support